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The ability to volitionally regulate emotions is critical to health and well-being. While patterns of neural activa-
tion during emotion regulation have been well characterized, patterns of connectivity between regions remain
less explored. It is increasingly recognized that the human brain is organized into large-scale intrinsic connectiv-
ity networks (ICNs)whose interrelationships are altered in characteristic ways during psychological tasks. In this
fMRI study of 54 healthy individuals, we investigated alterations in connectivity within and between ICNs pro-
duced by the emotion regulation strategy of reappraisal. In order to gain a comprehensive picture of connectivity
changes, we utilized connectomic psychophysiological interactions (PPI), a whole-brain generalization of stan-
dard single-seed PPI methods. In particular, we quantified PPI connectivity pair-wise across 837 ROIs placed
throughout the cortex. We found that compared to maintaining one's emotional responses, engaging in reap-
praisal produced robust and distributed alterations in functional connections involving visual, dorsal attention,
frontoparietal, and default networks. Visual network in particular increased connectivity with multiple ICNs in-
cluding dorsal attention and default networks.We interpret these findings in terms of the role of these networks
in mediating critical constituent processes in emotion regulation, including visual processing, stimulus salience,
attention control, and interpretation and contextualization of stimuli. Our results add a newnetwork perspective
to our understanding of the neural underpinnings of emotion regulation, and highlight that connectomic
methods can play a valuable role in comprehensively investigating modulation of connectivity across task
conditions.

© 2013 Elsevier Inc. All rights reserved.
Introduction

The ability to volitionally regulate emotion contributes to behavioral
flexibility and well-being, while deficits in this capacity are linked to
maladjustment and psychopathology (Gross and Thompson, 2007).
Given its importance in health and disease, more than 50 studies have
examined the neuralmechanisms of emotion regulationwith functional
magnetic resonance imaging (fMRI). These studies demonstrate that
emotion regulation involves increased activity in cortical regions
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associated with cognitive and attention control such as dorsomedial
prefrontal cortex (PFC), lateral PFC, and superior parietal regions, and
produces diminished activation in emotion production regions such as
the amygdala (see Ochsner and Gross, 2005; Ochsner et al., 2012;
Phan and Sripada, 2013 for reviews). Though patterns of activation dur-
ing emotion regulation have been well characterized, patterns of con-
nectivity between regions remain less explored.

The issue of connectivity alterations during emotion regulation is
particularly intriguing in light of increasingly influential network
models of neural architecture. The human brain appears to be organized
into large-scale intrinsic connectivity networks (ICNs) (Fox et al., 2005;
Menon, 2011). These are distributed regions that exhibit coherent activ-
ity during rest and tasks (Greicius et al., 2003; Smith et al., 2009) and are
associatedwith specific neurocognitive functions (Laird et al., 2011). Al-
terations in the relationships between ICNs during tasks are thought to
reflect adjustments in network-mediated information-processing
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(Bressler and Menon, 2010), and are predictive of task performance
(Fransson, 2006). While the ICN perspective has primarily been applied
to studies of the unperturbed resting state, a growing body of research
investigates network alterations produced by psychological tasks
(Fornito et al., 2012; Harrison et al., 2008; Kinnison et al., 2012;
Spreng et al., 2010).

In social affective neuroscience, challenges have emerged for “facul-
ty approaches” that seek to localize particular emotions and emotion
regulatory capacities in discrete brain regions (Barrett and Satpute,
2013; Lindquist et al., 2012). A new “network-based approach”
(Barrett and Satpute, 2013; Kinnison et al., 2012) instead investigates
affective phenomena from a distributed systems perspective. In this
framework, emotions are conceptualized as mental events that emerge
from integration within and between large-scale networks. Recent
studies have uncovered altered network interrelationships due to social
affective phenomena such as emotion states (Barrett and Satpute, 2013;
Eryilmaz et al., 2011), moods (Harrison et al., 2008), and empathy (Raz
et al., 2013). Applying a network-based perspective to understanding
emotion regulation, it is plausible that this capacity implicates a number
of constituent processes associated with large scale ICNs. These include
visual processing (visual network; Yeo et al., 2011), voluntary control of
visual attention (dorsal attention network; Corbetta and Shulman,
2002), working memory and goal-directed attention (frontoparietal
network; Seeley et al., 2007), and assigning personal meanings to stim-
uli (default network; Buckner et al., 2008; Gusnard et al., 2001). These
observations raise the hypothesis that these implicated ICNs alter their
relationships, and in particular, become more interconnected, during
voluntary regulation of emotion, reflecting greater integration of infor-
mation across these constituent processes.

In this fMRI study of 54 healthy individuals, we investigated alter-
ations in connectivity within and between large-scale networks pro-
duced by reappraisal, an important voluntary emotion regulation
strategy. Previous studies of connectivity during emotion regulation
have used seed-basedmethods, and examined a single or small number
of seeds (Banks et al., 2007; Urry et al., 2006; Wager et al., 2008). These
methods have clarified links between subcortical nodes, especially
amygdala and striatum, and prefrontal regions implicated in regulation.
They are less useful, however, for identifying altered relationships
across large-scale ICNs. Thus in order to gain a comprehensive picture
of large-scale network changes produced by emotion regulation,we uti-
lized connectomic psychophysiological interactions (PPI), a whole-
brain generalization of standard single-seed PPI methods (Friston
et al., 1997; McLaren et al., 2012). We quantify PPI connectivity pair-
wise across 837 ROIs placed throughout the cortex. We utilize network
contingency analysis, a statistical method that identifies connectivity
changes across pairs of networks. We demonstrate that voluntary
regulation of emotion produces robust and distributed alterations in in-
terconnections between multiple networks implicated in current theo-
retical models of emotion regulation.
Methods

Subjects

All subjects provided informed consent for the study protocol, as ap-
proved by the University of Michigan Institutional Review Board. Of 54
participants who entered the study, two did not complete the task, one
had incomplete fMRI data due to scanner problems, and two had exces-
sive head movement during scanning (N3 mm movement). Thus 49
participants contributed to the present analysis (age mean and sd:
23.63 ± 1.30, range: 20–27, males = 26). All subjects had noMRI con-
traindications (e.g., metallic/ferrousmaterials in their body), no prior or
current treatment for any psychiatric disorder (clinician-conducted
psychiatric evaluation based on the Structured Clinical Interview for
DSM-IV), and no history of neurological injury.
Participants for this study were recruited as part of an fMRI study of
the long-termneural effects of childhood poverty. At the time of scanning,
15% of subjects were below the U.S. Census Bureau-defined poverty line,
which is similar to a representative sample of U.S. residents. At age 9,
roughly half of the participantswere fromhouseholds below theU.S. Cen-
sus Bureau-defined poverty line, and the other half were from non-
poverty backgrounds. See Evans (2003) for further details on subject re-
cruitment and protocols. In the present study, our primary interest was
in the effects of emotion regulation on network connectivity, rather
than effects of childhood poverty. We included covariates controlling for
the effects of current income and childhood poverty in all analyses.

Task

We used an Emotion Regulation Task (ERT) validated in previous
fMRI studies (Banks et al., 2007; Phan et al., 2005). The task involved
three conditions. During theMaintain and Reappraise conditions, partic-
ipants were presented with aversive pictures from the International Af-
fective Picture System (IAPS; Bradley and Lang, 2007). During the
Maintain condition, participantswere instructed to attend to and experi-
ence naturally (without trying to change or alter) the emotional state
elicited by the pictures. During the Reappraisal condition, participants
were instructed to voluntarily decrease the intensity of their negative af-
fect by using the cognitive strategy of reappraisal (Gross, 1999). In partic-
ular, participants were asked to use one of two strategies: 1)
transforming the depicted scenario into less negative or positive terms
(e.g., people crying outside the church are leaving a wedding and the
tears are joyful); and 2) rationalizing or objectifying the content of the
pictures (e.g. an abusedwoman is an actress in amovie between scenes).
During a pre-scanning session, participants practiced these reappraisal
strategies by talking through the process out loud with practice stimuli
(separate from the stimuli shown in the scanning session). Experi-
menters assisted participants by correcting their technique or suggesting
alternative reappraisals. Participants were instructed not to look away or
distract themselves with irrelevant thoughts. Participants practiced until
they could reliably and rapidly generate appropriate reappraisals of stim-
uli, and understanding of the taskwas confirmed by reviewing examples
of subject-generated strategies. There was also a third condition, the
Neutral Look condition, in which participants were presented with neu-
tral IAPS pictures and instructed to simply look at them. This condition
provided a control condition for an additional hypothesis, unrelated to
the aims of the current report, of the effects of childhood poverty on neu-
ral responses to aversive pictures. Of note, we chose to study reappraisal
because it is an important emotion regulation strategy (Gross, 1999), has
been shown to produce beneficial psychological and physiological
changes (Gross, 1998), and has been validated in fMRI in multiple prior
studies (Ochsner et al., 2002; Phan et al., 2005; see Ochsner et al.,
2012; Phan and Sripada, 2013 for reviews).

The fMRI task was structured in terms of a block-related design in
which subjects viewed 20 second blocks of aversive or neutral pic-
tures. Each picture was presented continuously for 5 s without an in-
terstimulus interval. Prior to each block of pictures, the instruction to
‘Look’, ‘Maintain’ or ‘Reappraise’ appeared at the center of a black
screen for a duration of 5 s (Instruction). Immediately following
each Neutral Look, Maintain or Reappraise block, a blank screen
with a rating scale appeared for 5 s asking participants to rate the in-
tensity of their negative affect on a 5-point scale (1 = least negative/
neutral, 5 = extremely negative) via button response (Rating). The Look/
Maintain/Reappraise blocks were interspersed with 20 second baseline
blocks consisting of a fixation cross to minimize carryover effects (‘Base-
line’), and to allow the bloodoxygen-level dependent (BOLD) signal to re-
turn to baseline. During this period, participants were asked to stop
maintaining or reappraising their emotional experience and to relax.
The total task duration was 10 min spread across 2 runs.

The stimulus set consisted of 32 highly aversive and arousing pictures
and 16 neutral pictures based on normative IAPS ratings (Bradley and
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Lang, 2007). Themean and standard deviation for the valence and arous-
al values for the aversive pictures on a 9-point scale were 2.60 ± 0.63
and 5.72 ± 0.62, respectively and for the neutral pictures were
5.59 ± 0.89 and 3.67 ± 0.78 (1 = most unpleasant/least arousing,
9 = most pleasant/most arousing) based on normative ratings (Lang
et al., 1993). The aversive pictures elicit both evaluation and experience
of negative affect (Lang et al., 1993) and generally depict complex scenes
of burn victims, funeral scenes, people crying, and dead animals. Of note,
the aversive pictures selected for Reappraise and Maintain conditions
were matched for general content, including faces and figures and
were balanced on subjective valence (t(30) = 0.46, p N 0.05) and arous-
al (t(30) = 0.57, p N 0.05).

FMRI scanning and preprocessing

MRI scanning occurred on a Philips 3.0 T Achieva X-seriesMRI (Best,
The Netherlands). We obtained 300 functional volumes with a T2*-
weighted, echoplanar acquisition sequence [GRE; repetition time,
2000 ms; echo time, 25 ms; flip angle, 90°; field of view, 22 cm; 42
slice; thickness/skip, 3.0/0 mm; matrix size equivalent to 64 × 64].

A standard series of processing steps was performed using statistical
parametricmapping (SPM8;www.fil.ion.ucl.ac.uk/spm). After discarding
four images at the beginning of each fMRI run to account for magnetic
equilibrium, scans were reconstructed, slice-time corrected (sequential
ascending, reference slice = 21), realigned to the first scan in the exper-
iment to correct for head motion, spatially normalized to a functional
template, resampled to 2 × 2 × 2 mm voxels, and spatially smoothed
using a Gaussian filter with a full-width half-maximum value of 8 mm.

fMRI analysis

Psychophysiological interaction analysis (PPI)
PPI analysis (Friston et al., 1997) is a validated and widely used

method that assesses whether functional connectivity between brain
regions differs across task conditions, after controlling for the effect of
task on the BOLD response. More specifically we used the Generalized
PPI method developed by McLaren and colleagues, as this method has
been shown to improve sensitivity and specificity (McLaren et al.,
2012). Standard PPI creates an interaction regressor (the multiplication
of a task regressor and the deconvolved BOLD time series from the seed)
in order to identify brain regions that exhibit task-modulated connec-
tivity with the seed. Generalized PPI in contrast produces a connectivity
map separately for each task condition. These condition-specific
Fig. 1. Steps of the network contingency analysis. All possible interconnections between sevenm
work cross-tabulation map. The network contingency analysis assesses whether the number o
pected by chance. Each step of the analysis is discussed in greater detail in the main text.
connectivity maps are then subtracted to investigate differences in con-
nectivity across conditions.

Connectomic PPI and network contingency analysis
PPI is typically deployed as a seed-basedmethod; PPI connectivity is

calculated between a single ROI seed and every voxel in the brain. Uni-
variate statistics are then used to assess statistical significance, typically
with voxel-wisemultiple comparison correction.Wewere interested in
comprehensively characterizing connectivity changes across all seven
major ICNs. The method implemented here, connectomic PPI with net-
work contingency analysis, has several advantages for this purpose.
First, this method comprehensively characterizes connectivity across
the entire brain without potentially arbitrary choices of seed regions.
Second, this method leverages a priori information about network
structure to directly assess questions about internetwork connectivity.
Third, it avoids univariate tests across the hundreds of thousands of con-
nections of the connectome, instead conducting a single contingency
test (which assesses whether the number of suprathreshold edges ex-
ceeds the number expected by chance) for each network pair investi-
gated. Fourth, it uses permutation tests, a non-parametric test that is
robust to deviations from assumptions of normality and independence.

Connectomic PPI. In order touse PPI as awhole-brain connectomicmeth-
od, we placed 3 mm radius ROIs (encompassing 19 2 mm3 voxels) in a
regular, 3-dimensional grid spaced at 12 mm intervals throughout the
brain. This density of ROI placement balances comprehensive coverage
with computational feasibility. Performing PPI on 50,000+ seed voxels
(followed by permutation tests for statistical significance) is not compu-
tationally feasible, and by placing seeds every 12 mm, we effectively
down sampled the data. Given our 8 mmsmoothing kernel, this density
of sampling also ensured that information from the entirety of the brain
was comprehensively sampled. Of note, our placement of seed ROIs
densely throughout the brain introduces redundancy as closely spaced
seed ROIs will yield highly similar PPI maps, which in turn raises con-
cern about needless multiple comparisons. However, the network con-
tingency statistic we introduce below obviates this issue, as the number
of comparisons is based on the number of ICNs investigated (i.e., 7),
rather than the number of seed ROIs.

Since our main interest was the cortical ICNs, we then removed all
ROIs from the grid that fell more than 5 mm (Euclidean distance)
from the Yeo et al. (2011) ICN parcellation of the brain, yielding 837
ROIs in total. We chose Yeo and colleagues' network map because
their studywas based on a large number of subjects (1000participants),
they included multiple convergent methods to assess reliability, and
ajor intrinsic connectivity networks are represented in 28 (non-redundant) cells of a net-
f suprathreshold condition-modulated edges within each cell is greater than would be ex-
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their parcellation was derived using grid-based connectomic methods
similar to the current study (Yeo et al., 2011).We calculated PPI connec-
tivity using the generalized PPI routine implemented in SPM8, modify-
ing the routine to calculate PPI between a seed ROI and a set of other
ROIs, rather than every voxel in the brain. For each ROI, we calculated
generalized PPI connectivity between this ROI seed and the 836 remain-
ing ROIs. This process was repeated with each ROI serving as seed once.
We refer to the connection between each pair of ROIs as an “edge”. The
interpretation of connectivity at each edge is identical in connectomic
PPI as in standard single-seed PPI—the chief difference being that
connectomic PPI places seeds throughout the brain while standard PPI
places seeds at a single or a small number of regions.

Because PPI is based on multiple regression, PPI coefficients need not
be identical when the seed region (ROI1) and target region (ROI2) are re-
versed, i.e., when ROI2 is used as the seed and ROI1 is used as the target.
This contrasts with correlation analysis in which the correlation between
ROI1 and ROI2 is the same as between ROI2 and ROI1. Thus while a
correlation-based adjacency matrix derived from n ROIs has
(n2 − n) / 2 unique edges (the diagonal is excluded as it represents con-
nectivity between a seed and itself), the PPI-based adjacencymatrix with
n ROIs has n2 − n edges. More specifically, in the present analysis that
used 837 ROIs, each condition-specific connectome has 699,732 edges.

Five conditions were modeled in the PPI analysis: Neutral Look,
Maintain, and Reappraise blocks, as well as Instruction and Rating pe-
riods. Since our main interest was in the connectivity changes associat-
ed with voluntary regulation of emotion, we were primarily interested
in the condition-specific connectomes associated with the Reappraise
condition and the Maintain condition, which serves as its control. We
also generated the condition-specific connectome for the Neutral Look
condition in order to investigate a specific post-hoc hypothesis about
the visual cortex (see below).

Network contingency analysis. Our main aim was to determine whether
and where patterns of connectivity, as represented in the Reappraise
and Maintain condition-specific connectomes, significantly differed.
Several analytic approaches are available to address this question. We
avoided amass univariate approach inwhich statistical inference is per-
formed separately for each edge of the connectome, as the multiple
comparison correction required for performing 699,732 statistical
tests was deemed excessive. We instead performed a network contin-
gency analysis, which performs one statistical test on each pair of net-
works studied. More specifically, the analysis addresses the question
of whether for each set of edges linking two large-scale networks, the
population of condition-modulated edges is larger than one would ex-
pect by chance. This analysis is composed of the following steps (see
Fig. 1).

Step 1. Subtraction and thresholding. We subtracted the Maintain
connectome from the Reappraise connectome, producing a
Reappraise − Maintain delta connectome, and we thresholded
this delta connectome based on statistical significance. For each
edge, we fit the following multiple regression model:

yi ¼ β1X1 þ β2X2 þ bþ ε

where yi is the magnitude of the PPI connectivity difference in Reap-
praise minus Maintain at edge i; X1 and X2 are two poverty covariates:
age nine income to needs ratio and current income to needs ratio; β1

and β2 are estimated betas; b is an intercept term that represents the
mean effect of the Reappraise condition over and above the Maintain
baseline; and ε is a mean zero error term. Note that the model without
the poverty covariates (i.e., the ‘intercept only’model) is formally iden-
tical to a paired-sample t-test, and thus the above regression model ef-
fectively performs a paired-sample t-test that controls for the effects of
poverty.
Based on statistical significance of the intercept term, i.e., mean ef-
fect of condition, we thresholded the Reappraise–Maintain connectome
at p b 0.001 (the rationale for this threshold is discussed below).

Step 2. Organize edges based onnetwork affiliation.Next,we organized
the suprathreshold edges of the Reappraise–Maintain delta connectome
in terms of network affiliation.We utilized the networkmap of Yeo et al.
(2011) discussed above which parcellates the brain into seven major
networks. These seven networks were used to generate a cross-
tabulation map with 28 (non-redundant) cells (Fig. 1). Each cell repre-
sents the set of edges linking two networks; cells along the diagonal
represent edges originating and terminating in the same network,
while off diagonal cells represent edges originating in one network
and terminating in another. Each of the suprathreshold edges in the Re-
appraise–Maintain delta map was assigned to one of these 28 cells
based on its origination and termination.

For visualization purposes, we placed a dot in the cross-tabulation
map to represent suprathreshold edges. Since PPI is based on regression,
the PPI coefficient when ROI1 is the seed and ROI2 is the target need not
be the same as the coefficient when ROI2 is the seed and ROI1 is the tar-
get. Thus for each connection linking two ROIs, we placed a dot at the
appropriate position in the map if either of the two directional connec-
tions (or both) was present. Suprathreshold edges that became more
positive in Reappraise (NMaintain) were shown as red dots, while
suprathreshold edges that that became more negative in Reappraise
(NMaintain) were shown as blue dots. In addition, in extremely rare
cases in which both directions of an edge survived thresholding but
their signs disagreed (one edge was more positive in Reappraise while
the other wasmore negative in Reappraise)we colored the dots yellow.

Step 3. Cell-wise contingency analysis.We tested the hypothesis that
the number of observed edges in a cell of the thresholded network
cross-tabulation map exceeds the number that would be expected
by chance alone. The details of this analysis are as follows: First we
selected a cell in the network cross-tabulation map and counted
the number of suprathreshold edges in the cell (‘Nobserved’). Next
we compared Nobserved to the number of suprathreshold edges that
would be expected by chance under the null hypothesis that there
is no effect of the condition manipulation. To calculate this null dis-
tribution, we utilized a permutation test, a non-parametric test that
is robust to deviations from independence assumptions of paramet-
ric tests such as Bernoulli or chi-square tests (Good, 2000).

In performing the permutation test, relabeled datawas generated by
randomly selecting subjects and switching their condition labels (i.e.,
‘Reappraise’ and ‘Maintain’). Steps 1 through 2 above were then
performed with this relabeled data. This was repeated 10,000 times
and Nobserved was calculated at each iteration, yielding a distribution of
Nobserved values. The p value of the actual Nobserved value was calculated
as the number of Nobserved values in the permutation distribution that
exceeded the actual value divided by 10,000. Since the permutation
test is performed for a multiple regression model that includes covari-
ates (see step 1), the procedure of Freedman and Lane (1983) was
followed. In brief, amultiple regressionmodel is first estimatedwith co-
variates alone, residuals are formed and are permuted. The covariate ef-
fect is then added back in, creating an approximate realization of data
under the null hypothesis, and the statistical test of interest is calculated
on this data (see FSL Randomise http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
Randomise/Theory for a neuroimaging implementation).

We performed a cell-wise contingency analysis separately for each
cell of the thresholded network cross-tabulation map and corrected
for multiple comparisons with the false discovery correction procedure
(FDR; Benjamini and Hochberg, 1995). Cells that survived FDR correc-
tion were next shaded. Since wewere also interested in the directional-
ity of changes, the cell was shaded redder as the proportion of
suprathreshold cells that exhibit positive change approaches one and
bluer as this number approaches zero (predominantly negative
changes).

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory
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In step 1 of the network contingency analysis, we set the p value
threshold (‘pthreshold’) to be 0.001, consistent with prior studies (e.g.,
Di Martino et al., 2013). To test the robustness of the analysis under dif-
ferent threshold values, we performed the Reappraise vs. Maintain net-
work contingency analysis with pthreshold set to {0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1}. Each of these pthreshold values yielded a p value
map (one p value for each of the 28 cells that make up the map). We
then generated aweightedmean of these p values across the thresholds
by calculating a normalized area under the curve. In doing this calcula-
tion, the pthreshold values were first z-transformed so that the distance
between pthreshold values was well scaled. This procedure yielded a sin-
gle weightedmean p value map. We then performed FDR correction for
multiple comparisons on these values and compared the results to those
resulting from the analysis with pthreshold set at 0.001.

In order to clarify location, distribution, and lateralization of impli-
cated edges, we generated three-dimensional visualizations of the sta-
tistically significant cells from step 4. All suprathreshold edges in these
cells were rendered on a three-dimensional canonical brain using
connectomic visualization tools implemented in BrainNet Viewer,
http://www.nitrc.org/projects/bnv/ (Xia et al., 2013). Finally, in the
Supplement, we present the PPI connectivity values of each
suprathreshold edge in Maintain and Reappraise in graphical (Fig. S1)
and table form (Table S1).

Effect of childhood poverty
Our primary interest was in the effects of emotion regulation on net-

work connectivity, but for completeness, we didmodel and examine the
effects of childhood poverty on network connectivity during emotion
regulation. In particular, we modeled participants' income-to-needs
ratio at age 9 (mean 1.87 ± 1.11) as well as current income-to-needs
ratio (mean 3.23 ± 2.96) as covariates. These two poverty covariates
were included in themultiple regressionmodel in step 1 of the network
contingency analysis discussed above. In order to determine whether
childhood poverty predicts differences in connectivity during
Reappraise versus Maintain, we performed an additional network con-
tingency analysis on the childhood poverty regressor. There were no
significant cells of the network cross-tabulation map suggesting that
age nine poverty does not predict network interrelationships during
emotion regulation at adulthood.

Seed-based connectivity analysis
Seed-based methods have been used in previous studies to examine

connectivity during emotion regulation, and have uncovered connectiv-
ity changes at subcortical structures including amygdala and ventral
striatum. CPPI methods are especially well suited to examining connec-
tivity differences at cortical ICNs, but have less ability to detect connec-
tivity changes at small subcortical structures. In order to complement
the cortical ICN findings from cPPI, we conducted additional seed-
based PPI analyses. In particular, we used the same generalized PPI pro-
cedure described above for specific seeds: left and right amygdala, and
left and right ventral striatum. The amygdala seeds consisted of anatom-
ical masks derived from the Automated Anatomical Labeling (AAL)
parcellation system (Tzourio-Mazoyer et al., 2002). The ventral striatal
seeds were 5 mm radius spheres placed at the peak coordinates (MNI
−10, 14,−14) reported in a previous study that identified connectivity
changes in striatum during emotion regulation (Wager et al., 2008).
Only the left striatal ROI was identified in that study, but we included
the corresponding right-sided ROI as well. Finally, because default net-
work, an important ICN, is often investigated in seed-based studies
with a posterior cingulate cortex (PCC) seed, we included a seed
consisting of a 5 mm radius sphere centered at a peak coordinate
(MNI 0,−53, 26) reported in a previous study (Van Dijk et al., 2010).

For each seed, first-level PPImaps from the Reappraise andMaintain
conditions were entered into an SPM8 random effects model and
subtracted using paired sample t-tests, with age nine income-to-needs
and current income-to-needs included as covariates. We thresholded
the second-level activation maps at p b 0.001 uncorrected to match
the connectivity threshold (i.e., pthreshold) used in ourmain cPPI analysis.

Activation analysis
In order to compare patterns of functional connectivity during emo-

tion regulation with patterns of brain activation, we also performed a
standard activation analysis. In first-level analysis, wemodeled Neutral,
Look, Maintain, and Reappraise blocks, as well as Instruction and Rating
periods, and linear contrasts compared activation in the Reappraisal
condition with the Maintain condition. First-level maps were entered
into an SPM8 random effects model with paired sample t-tests, with
age nine income-to-needs and current income-to-needs included as co-
variates and thresholding set at p b 0.001.

Results

Behavioral results

Ratings of affective state were significantly lower in the Reappraise
condition (M = 2.45 ± 0.92) compared to the Maintain condition
[M = 2.95 ± 0.83; t(48) = −4.62, p b .001], suggesting that the emo-
tion regulation manipulation produced its intended effect of reducing
negative affect in response to aversive pictures. As expected, ratings of
affect during the Neutral Look condition during which participants
looked at neutral pictures were significantly lower than the Maintain
or Reappraise condition (M = 1.17 ± 0.34, Maintain: t(48) = 14.36,
Reappraise: t(48) = 11.34, both ps b .001).

fMRI results

Using network contingency analysis, we compared the Reappraise
versus Maintain PPI connectomes. We found reappraisal produced sta-
tistically significant effects in six cells, where each cell represents the
set of connections linking two networks: 1) visual–visual, q b 0.001,
FDR-corrected; 2) visual–dorsal attention, q b 0.01, FDR-corrected; 3)
visual–frontoparietal, q b 0.05, FDR-corrected; 4) visual–default,
q b 0.05, FDR-corrected; 5) dorsal attention–dorsal attention, q b 0.05,
FDR-corrected; and 6) dorsal attention–default (q b 0.05, FDR-
corrected; see Fig. 2). In all six of these network pairs (shaded in
Fig. 2), there was a preponderance of edges exhibiting a positive change
in connectivity reflecting greater connectivity during Reappraise com-
pared to Maintain (Table 1).

To assess the robustness of this analysis,we performednetwork con-
tingency analyses using p value thresholds ranging from 0.0001 to 0.1,
taking the normalized AUC of the results across analyses (see Methods
for details). We found that the same six cells of the network cross-
tabulation map shown in Fig. 2 were statistically significant, though
the default network-dorsal attention cell was trend-level significant
(q = .10, FDR-corrected). Moreover, no other cells other than these
six were statistically significant, suggesting that the analysis is indeed
robust across p value thresholds.

For each of the six statistically significant cells shown in Fig. 2, we
produced three-dimensional visualizations of the suprathreshold
edges in these cells (Fig. 3). These visualizations allowmore detailed ap-
preciation of localization, distribution, and lateralization of edges. For
example, it can be seen in Fig. 3 that visual network connections with
default network involved diffuse regions of the default network,
encompassing prefrontal, posterior midline, bilateral inferior parietal,
and lateral temporal regions. Additionally, prominent right lateraliza-
tion of ICN connections with visual cortex was observed in two net-
works: frontoparietal network and default network. In both networks,
the ratio of connections linking the right sides of the respective net-
works to visual network (compared to the left sides of the networks
with visual network) was significantly skewed in favor of right sided
connections (right frontoparietal-visual = 136, left frontoparietal-
visual = 55, Bernoulli test p b 0.001; right default-visual = 226, left

http://www.nitrc.org/projects/bnv/


Fig. 2. Reappraise–Maintain network cross-tabulationmap. A network contingency analysis was used to compare the Reappraise andMaintain condition-specific connectomes. Intercon-
nections between sevenmajor intrinsic connectivity networks (derived from the parcellation of Yeo et al., 2011) are represented on themap; each of the 28 cells in themap represents the
set of connections linking two networks. Cells that are shaded have significantly more edges modulated by the task conditions than would be expected by chance (FDR-corrected,
q b 0.05). The map indicates that Reappraisal enhances connectivity between the following networks: visual–visual, visual–dorsal attention, visual–frontoparietal, visual–default, dorsal
attention–dorsal attention, and dorsal attention–default.
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default-visual = 109, Bernoulli test p b 0.001). In the Supplement, we
comprehensively present the PPI connectivity values of each
suprathreshold edge in Maintain and Reappraise in graphical (Fig. S1)
and table form (Table S1).

Our findings of increased connectivity within visual network in the
Reappraise versus Maintain condition is intriguing in light of recent
findings that suggest that greater intra-visual connectivity is inversely
related to salience of visual stimuli (Sripada et al., 2013; see
Discussion). This suggests that emotion regulation was successful in
Table 1
Descriptive statistics for Reappraise–Maintain. In the six statistically significant cells of the
network cross-tabulation map (see Fig. 2), reappraisal preponderantly increased
internetwork connectivity compared to the maintaining of one's emotional response
without regulation.

Network 1–Network 2 Number of
suprathreshold edges

% of suprathreshold edges
that are greater in
Reappraise vs. Maintain

Visual–visual 354 67
Visual–dorsal attention 198 71
Visual–frontoparietal 186 96
Visual–default 330 92
Dorsal attention–dorsal attention 51 94
Dorsal attention–default 145 89
that aversive stimuli were less attended to or less salient in the Reap-
praise condition compared to the Maintain condition. To provide an ad-
ditional test of the hypothesis that presentation of more salient visual
stimuli is associated with diminished intra-visual connectivity, we per-
formed an additional network contingency analysis on the Neutral Look
versus Maintain condition-specific connectomes, focusing specifically
on intra-visual connections. We predicted higher intra-visual connec-
tivity during the Neutral Look condition in which participants are pre-
sented with less salient neutral pictures compared to the Maintain
condition in which participants are presented with more salient aver-
sive pictures. Results confirmed this hypothesis, as intra-visual connec-
tivity was markedly different in the Neutral Look versus Maintain
conditions (network contingency analysis cell-wise p value for visual
network-visual network connections: p b 0.001), with the vastmajority
of edges (97%) increased in the Neutral Look condition (Fig. 4).

Seed-based connectivity analysis

In the Reappraise versus Maintain condition, we observed enhanced
connectivity between seeds in right amygdala and right ventral stria-
tum with a region spanning anterior cingulate cortex and nearby
dorsomedial PFC. These two regions, along with left ventral striatum,
also exhibited enhanced connectivity with lateral prefrontal regions in-
cluding inferior frontal gyrus (see Fig. 5 and Table 2).



Fig. 3. Network interconnections modulated by volitional emotion regulation. The network contingency analysis of the Reappraise–Maintain connectomes found six sets of network-to-
network connections that were significantlymodulated by the task conditions. These six sets of network-to-network connectionswere rendered separately on sagittal and superior views
of a canonical brain.
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Activation results

In the Reappraise versus Maintain contrast, we observed activation
in dorsolateral and dorsomedial PFC, superior parietal cortex, caudate/
Fig. 4. Neutral Look–Maintain in visual network. In order to test the hypothesis that re-
duced stimulus salience enhances intra-visual network connectivity, we performed an ad-
ditional network contingency analysis restricted to visual cortex on the condition-specific
connectomes for theNeutral Look condition (inwhich subjects looked at neutral pictures)
versus theMaintain condition (inwhich subjects looked atmore salient aversive pictures).
As predicted, we observed more intra-visual edges modulated by task than expected by
chance (FDR-corrected, q b 0.001), with the vast majority of edges (97%) increased in
the Neutral Look condition.
putamen and superior temporal sulcus/temporal pole regions. There
was reduced activation in middle and posterior insula extending to
rolandic operculum (see Fig. 6 and Table 3).
Discussion

In this study, we examined functional connectivity changes pro-
duced during reappraisal, an important volitional emotion regulation
strategy. In order to gain a comprehensive picture of connectivity alter-
ations across the entire brain, we used connectomic psychophysiologi-
cal interaction analysis, quantifying PPI connectivity pair-wise across
837 ROIs placed throughout the cortex. We found that voluntary regu-
lation of emotion produces robust and distributed alterations in func-
tional connections involving visual, dorsal attention, frontoparietal,
and default networks. These networks are in turn implicated in a num-
ber of critical constituent processes in emotion regulation, including vi-
sual processing, attention control, and stimulus interpretation and
contextualization. Our results add a new dimension to our neurobiolog-
ical understanding of emotion regulation by suggesting a potentially
important role for altered intra- and inter-network connectivity. More-
over, this study highlights that connectomic PPI is a potentially valuable



Fig. 5. Seed-based PPI results Reappraise–Maintain. A–C. Seed-based psychophysiological interaction (PPI) analysiswas conducted in the Reappraise versusMaintain conditionswith four
subcortical seeds implicated inprevious studies of emotion regulation: right and left amygdala and right and left ventral striatum. DuringReappraise (NMaintain), right amygdala and right
ventral striatum exhibited increased connectivity with anterior cingulate/dorsomedial prefrontal cortex. Right amygdala and bilateral striatum exhibited increased connectivity with lat-
eral prefrontal cortex. D.We investigated default network connectivity with a PCC seed in order to comparewith connectomic PPI results. Results showed increased PCC connectivity dur-
ing Reappraise (NMaintain) in superior parietal cortex and posterior occipital cortex. Amyg = Amygdala; VS = Ventral Striatum; PCC = Posterior Cingulate Cortex.
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new tool in comprehensively investigating modulation of connectivity
across task conditions.

Recent models emphasize the importance of interrelationships be-
tween large-scale networks in the neural underpinnings of human cog-
nition (Bressler and Menon, 2010; Laird et al., 2011). Concurrently,
models of emotion have emerged that deemphasize localization of emo-
tions in discrete brain regions (Barrett and Satpute, 2013; Lindquist
et al., 2012), and instead investigate affective phenomena from a dis-
tributed systems perspective (Barrett and Satpute, 2013; Kinnison
et al., 2012). Based on these models, we applied a network perspective
to understand reappraisal, an important volitional regulation strategy
that has also been examined in a large number of fMRI activation studies
(see Diekhof et al., 2011; Kalisch, 2009; Ochsner et al., 2012; Phan and
Sripada, 2013 for reviews). We observed altered interconnections be-
tween multiple large-scale ICNs including visual, dorsal attention,
frontoparietal, and default network, and discuss the importance of
these findings for current models of emotion regulation individually
below.

During reappraisal, we found increased connectivity between dorsal
attention network and visual network, as well as increased connectivity
within dorsal attention network. Dorsal attention network encom-
passes superior parietal cortex, posterior temporal regions, and superior
frontal regions including the frontal eye fields (Yeo et al., 2011). This bi-
lateral network has been implicated in voluntary regulation of visual at-
tention in accordance with goals. Convergent evidence from fMRI
(Corbetta and Shulman, 2002), lesion studies (Corbetta and Shulman,
2011), transcranial magnetic stimulation (Driver et al., 2010; Ruff
et al., 2006), and effective connectivity analysis of neuroimaging data
(in particular, dynamic causal modeling; Vossel et al., 2012) demon-
strates that dorsal attention network is richly interconnected with visu-
al network and modulates multiple aspects of visual processing. The
dorsal attention network has been implicated in both spatial attention
(orienting to specific regions of the visual field) as well as feature-
based attention (attending to certain features in the visual field)
(Egner et al., 2008). It is likely that both kinds of attention are critical
in volitional emotion regulation, as conjectured by Ochsner et al.
(2012 p.E14). For example, when presented with aversive pictures, it
is possible that subjects may foveate on less aversive features of the
scene, consistent with the results of previous studies that measured
gaze fixation during emotion regulation (van Reekum et al., 2007;
Xing and Isaacowitz, 2006). Alternatively, heightened intra-dorsal at-
tention and dorsal attention-visual network connectivity may reflect
modulation of visual properties of stimuli by higher-level information
(Ochsner et al., 2012).

We also observed increased connectivity between frontopartietal
network—which encompasses lateral prefrontal cortex (LPFC) and lat-
eral posterior parietal cortex—and visual network. It is noteworthy
that frontopartietal network is closely linked with dorsal attention
network, and the two are sometimes viewed as part of a larger task-
positive network (Fox et al., 2005). Frontoparietal regions such as
LPFC are engaged during cognitively demanding tasks that require
maintaining information in working memory, and manipulation of in-
formation in accordance with task demands (Miller, 2000; Wager
and Smith, 2003). In addition, primarily right lateralized regions of
frontoparietal network, especially in posterior parietal cortex, have
been postulated to play a key role in visual attention, while lesions in
these regions are associated with spatial neglect (Corbetta and
Shulman, 2011). Of note, we observed pronounced right lateralization
of frontoparietal connectionswith visual network, especially in anterior
regions of the network including LPFC, which potentially might be ex-
plained in terms of contributions of this network to goal-directed con-
trol over visual attention.

Reappraisal was also found to significantly impact connectivity of
default network; this network becamemore interconnected with visual
network as well as dorsal attention network. The default network in-
cludes widely distributed regions in medial prefrontal cortex, posterior
cingulate, inferior parietal cortex, and lateral temporal regions (Buckner
et al., 2008; Yeo et al., 2011). This network is implicated inmultiple pro-
cesses relevant to emotion regulation. The default network plays a role
in the interpretation of incoming stimuli; it contextualizes stimuli by



Table 2
Seed PPI results for Reappraise versus Maintain. Results from whole-brain voxelwise
analysis of seed-based PPI connectivity differences in Reappraise versus Maintain
conditions. All results are presented at P(uncorrected) b 0.001 with a minimum clus-
ter size of 25 voxels.

Seed region Region MNI coordinates Volume T(46)

x y z (mm3)

Right amygdala Cerebellum −4 −42 −18 1128 4.57
(Reappraise N Maintain) ACC −10 38 20 968 4.54

8 38 22 352 4.12
Precuneus 12 −64 54 336 4.24
IFG −46 30 4 928 4.22
Putamen −20 8 −6 264 3.94
Thalamus −12 4 14 984 3.84
Caudate 14 12 −2 400 3.84
Sup parietal gyrus −30 −66 52 424 3.84
Fusiform gyrus −28 −42 −22 344 3.72
Sup frontal gyrus 0 30 44 280 3.60

Left ventral striatum IFG 56 22 −10 888 5.20
(Reappraise N Maintain) −48 36 16 672 4.15

Lingual gyrus −26 −54 −6 304 4.28
Sup frontal gyrus 12 30 54 424 4.18

20 32 40 712 3.98
Mid temporal
gyrus

−52 −24 −8 488 3.79

Right ventral striatum Mid frontal gyrus 26 32 40 1672 5.46
(Reappraise N Maintain) 34 10 42 264 4.03

IFG −52 34 12 1336 4.72
−30 24 −28 312 4.23

52 24 −10 472 4.17
32 26 −28 232 3.70

Cerebellum 6 −48 −18 2992 4.69
Mid cingulate −6 −6 38 1800 4.46
Sup frontal gyrus −12 42 30 792 4.25
Mid temporal
gyrus

−52 −50 2 1672 4.15
60 −38 −14 320 4.14

Lingual gyrus −6 −78 −10 904 4.00
Caudate 16 2 16 240 3.95
Precuneus 16 −68 60 208 3.66

PCC Sup frontal gyrus −22 4 68 2504 5.29
(Reappraise N Maintain) 22 −4 68 984 4.59

Sup frontal gyrus
(orbital)

−18 58 −4 1696 4.71

Sup parietal gyrus 16 −58 48 4304 4.55
Precuneus −10 −58 62 3488 4.54
Fusiform gyrus 30 −38 −16 1088 4.41
Mid frontal gyrus 38 36 40 712 4.38

−34 44 6 432 4.36
−22 34 48 1024 4.26

48 42 6 240 3.80
Mid frontal gyrus
(orbital)

28 54 −10 288 3.89

Mid occipital gyrus −10 −104 8 1752 4.30
Parahippocampal
gyrus

−24 −16 −26 536 4.26

Mid cingulate 4 −26 48 408 4.14
Mid temporal
gyrus

−60 −14 −4 232 4.10
64 −20 −10 224 3.83

Sup occipital gyrus 14 −96 2 4144 4.08

Fig. 6.Whole-brain activation results Reappraise–Maintain. Consistentwithprevious studies,
volitional emotion regulation produced greater activation in control regions in prefrontal, su-
perior parietal, and temporal pole regions. Activationwas reduced in posterior insula extend-
ing to rolandic operculum, regions associated with emotion and negative affect.

Table 3
Activation results for Reappraise versus Maintain. Results from whole-brain voxelwise
analysis of neural activation differences in Reappraise versus Maintain conditions. All re-
sults are presented at P(uncorrected) b 0.001 with a minimum cluster size of 25 voxels.

Contrast Region MNI coordinates Volume T(46)

x y z (mm3)

Reappraise N Maintain Mid occipital/mid
temporal

−48 −70 8 56,088 10.13
52 −66 12 39,728 8.47

Bilateral IFG/mid
frontal/dlPFC

54 24 28 66,440 7.58

Thalamus −12 −16 0 10,352 5.68
20 −10 2 1392 4.11

Sup parietal gyrus 26 −66 56 8432 5.18
Mid temporal gyrus −52 −2 −24 480 4.60

Maintain N Reappraise Insula 54 −2 0 8096 5.40
−56 −4 2 1152 4.67
−38 4 12 264 4.12

Cuneus −6 −76 28 2928 5.01
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linking them with personally relevant information including autobio-
graphical memories and images (Gusnard et al., 2001; Schacter and
Addis, 2007). Closely linked to its interpretative function, default net-
work supports a broad range of simulative functions that involve dis-
tancing oneself from the current situation and projecting one's self
into alternative, non-actual scenarios (Buckner and Carroll, 2007). The
emotion regulation strategy of reappraisal, in particular, is likely to
draw on default network functions as it involves reinterpreting the sit-
uation by creating an alternative personal meaning for the situation and
volitionally ‘seeing’ the situation in light of this alternative meaning.
While the patterns of activation of default network during tasks is
well known, its task-specific patterns of connectivity are beginning to
become the focus of greater interest (Fornito et al., 2012; Gao and Lin,
2012; Spreng et al., 2010). For example, Spreng et al. (2010) found
that default network enhances its coupling with task control networks
during an autobiographical planning task, but not in an externally-
directed cognitively demanding task (the Tower of London task). The
present study provides additional evidence of task demands (i.e., voli-
tional regulation of emotion) driving altered connectivity of default net-
work with other large-scale networks.

Compared to the Maintain condition, the Reappraise condition pro-
duced increased intra-visual connectivity. One interpretation of this
finding is in terms of growing evidence that neuronal coherence within
visual cortex is inversely associated with visual attention and salience.
Thus states involving increased visual attention or salience of visual
stimuli have been found to produce decreased intra-visual connectivity,
for example eyes open (versus eyes closed) rest (McAvoy et al., 2012),
strong visual stimulation (Nauhaus et al., 2009), and administration of
pharmacological compounds that enhance alertness and attention,
such as methylphenidate (Sripada et al., 2013) and physostigmine
(Ricciardi et al., 2013). This hypothesis is also consistent with our find-
ing that in the Neutral Look condition, in which participants simply
looked at neutral pictures, there was significantly greater intra-visual
connectivity than during the Maintain condition, in which participants
are presented with aversive pictures. Of note, however, whereas the
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suprathreshold edges in the Neutral Look versus Maintain delta map
were almost exclusively positive (97%), the suprathreshold edges in
the Reappraise versus Maintain delta map were only preponderantly
positive (67%),meaningmany suprathreshold edgeswere reduced dur-
ing reappraisal. Thismight be explained perhaps in terms of the fact that
reappraisal involves altered interpretation of stimuli, and this plausibly
requires not simply reducing attention or salience, but rather shifting it
—deemphasizing certain perceptual features while emphasizing others
(Ochsner et al., 2012). Thus while reappraisal achieves an overall de-
crease in visual attention/salience, it achieves this through enhancing
attention to/salience of certain features within the visual scene, which
might explain themoremixed pattern that reappraisal has on the direc-
tionality of changes in intra-visual connectivity.

Our finding of changes within and between large-scale networks
during emotion regulation should be interpreted in light of an im-
pressive corpus of research that has investigated emotion regulation
from a cortical–subcortical perspective. In particular, previous fMRI
studies have reliably found altered interconnections between sub-
cortical regions, including amygdala and ventral striatum, and pre-
frontal regions including anterior cingulate, dorsomedial PFC, and
lateral PFC (Banks et al., 2007; Kober et al., 2010; Urry et al., 2006;
Wager and Smith, 2003). We replicated this pattern of results in
the current study, showing that during reappraisal, amygdala and
ventral striatum exhibit enhanced connectivity with these medial
and lateral prefrontal regions (see Fig. 5 and Table 2). The amygdala
has been implicated in threat processing (Amaral, 2003; LeDoux,
1998) and in assigning salience to stimuli more broadly (Liberzon
et al., 2003; Phelps, 2006; Vuilleumier, 2005). It has dense recipro-
cal interconnections with medial prefrontal regions (Ghashghaei
et al., 2007) that modulate amygdala reactivity in light of the cur-
rent context and goals (Kim et al., 2011). Evidence from animal
models (Quirk and Beer, 2006) and psychopathologies (Etkin and
Wager, 2007; Liberzon and Sripada, 2007; Rauch et al., 2006) sug-
gests that disruptions of connections between medial PFC and
amygdala produces maladaptive and decontextualized amygdala re-
sponses. The ventral striatum in contrast is implicated in reward
and positive affect (Delgado et al., 2000; O'Doherty, 2004). Wager
et al. (2008) found evidence that lateral PFC regions up-regulate
ventral striatal responses during successful emotion regulation.
More broadly, it has been proposed that lateral prefrontal regions
are relatively specialized for volitional regulation and provide in-
puts to medial regions, thereby indirectly affecting response profiles
of subcortical emotion-relevant centers (Ochsner and Gross, 2005;
Ochsner et al., 2012). Taken together, these findings regarding cor-
tical–subcortical connectivity underscore that emotion regulation
is a complex, multi-faceted process. In particular, it involves at least
two categories of functional connectivity alterations: discrete alter-
ations in cortical–subcortical links and distributed alterations in rela-
tionships between large-scale ICNs. While the functional significance
of cortical–subcortical links has been clarified in previous research,
changes in ICN configurations during tasks have been relatively less
well studied (but see Fornito et al., 2012; Gao and Lin, 2012; Spreng
et al., 2010). While we have offered conjectures regarding the func-
tional significance of altered ICN relationships during emotion regula-
tion in the preceding paragraphs, it is clear that substantial further
investigation is required.

These two categories of connectivity alterations associated with
emotion regulation—discrete cortical–subcortical changes and distrib-
uted ICN alterations—appear to be best investigated with distinct
methods. CPPI and network contingency analysis examine changes at
large populations of connections. They are thus well suited to capturing
distributed connectivity changes in large-scale networks that can be
sampled across hundreds of regions. In contrast, previous research as
well as the present study find that small structures such as amygdala
and striatum exhibit altered connectivity with relatively discrete pre-
frontal regions (Banks et al., 2007; Urry et al., 2006; Wager et al.,
2008). These types of connectivity changes are better investigated
with seed-based methods. That said, seed-based methods can also in
some cases provide a very useful window into large-scale network al-
terations. In comparison to cPPI, though, the information they provide
tends to be more limited. For example, we used a PCC seed to examine
default network changes during emotion regulation. We found alter-
ations in superior parietal cortex, located in dorsal attention network,
as well as the posterior pole of occipital cortex, which is in visual net-
work (Fig. 5 and Table 2). This is consistent with our cPPI results that
show altered connectivity between default network and both dorsal at-
tention and visual networks. However, comparing the cPPImaps involv-
ing default network in Fig. 3with the PCC seed-basedmap in Fig. 5C, it is
clear that the cPPI maps provide more information. In particular, the
PCC seed-based map fails to provide information regarding which re-
gions of default network changed connectivity with these other net-
works (whereas Fig. 3 shows that implicated default network regions
encompass ventral and dorsomedial PFC, lateral temporal, and lateral
parietal regions). Moreover, the PCC seed-based map misses multiple
important regions that changed their connectivity with default net-
work, such as posterior inferior temporal regions in dorsal attention
network and more anterior regions of visual cortex (i.e., regions in V2
andV3). Overall, connectomic PPI and seed-based connectivity are com-
plementary methods. Each method provides useful, non-overlapping
information into distinct aspects of the complex pattern of connectivity
changes occurring during emotion regulation.

We used network contingency analysis to make statistical infer-
ences about altered interrelationships between large-scale networks.
This approach relies on a count statistic: For each pair of ICNs, the num-
ber of connections that are observed to exceed a statistical threshold are
compared to the number expected by chance. An alternative approach
is to compute mean connectivity between all pairs of ICNs. The count
statistic we employed has several advantages relative to the mean-
based approach. First, the count statistic operates by placing a threshold
so that only strongly affected connections are counted. Since connec-
tions that are only weakly affected are much more likely to be noise,
thresholding removes noise and enhances the ability to detect a differ-
ence. Second, count statistics are robust to certain specific kinds of devi-
ations from normality assumptions. For example, if the condition of
interest affects the population of connections by ramping up a subset
of connections very stronglywhile leavingmost connections largely un-
affected (a neurobiologically and empirically plausible supposition),
then the count statistic will have more power to detect this effect
than the mean. The intuitive reason is that a statistic based on the
count of suprathreshold edges preferentially focuses on this small pop-
ulation of highly affected connections, while the mean averages over
the massive, mostly unaffected, population of connections. Third, the
use of counts is already well established in graph theoretic analyses of
connectivity. These analyses generate a connectivity matrix based on a
fine-grained parcellation of the brain. A threshold is then standardly im-
posed, and then one ofmany available graph theoretic statistics is calcu-
lated (Sporns et al., 2004). One of the most popular graph theoretic
statistics is thresholded global degree (e.g., Buckner et al., 2009),
which is a count of the suprathreshold edges. Thus the use of counts
in connectomic/graph theoretic analyses has been empirically validated
in previous studies.

It is useful to interpret our connectivityfindings in light of the results
of our activation analysis contrasting activation in the Reappraise versus
Maintain conditions (Fig. 6 and Table 3). PPI measures connectivity
changes between regions after covarying out the effect of the task ma-
nipulation. It is thus theoretically possible that regions that are co-
activated by task can show any PPI relationship—positive, negative, or
none. In addition to being theoretically independent, activation and
connectivity have different functional interpretations. Very roughly, ac-
tivation represents how much a region is working, while connectivity
representswith whom a region is working, i.e., withwhich other regions
the seed is sharing information (Bressler and Menon, 2010). Consistent
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with the possibility of independence between activity and connectivity,
we found that visual cortex, which played a very prominent role in our
connectivity results, did not exhibit statistically significant activation
differences in the Reappraise versus Maintain condition. The reverse is
true of superior parietal cortex and anterior regions of dorsomedial pre-
frontal cortex; these regions were strongly activated in the Reappraise
(NMaintain) condition, but were largely not represented in our connec-
tivity findings. Meanwhile, other regions exhibited statistically signifi-
cant activations in the Reappraise (NMaintain) condition, and also
exhibited increases in connectivity, in particular dorsolateral prefrontal
cortex and superior temporal sulcus/temporal pole regions. In contrast,
default network exhibited prominent increases in connectivity with vi-
sual cortex and dorsal attention network during reappraisal, but it did
not increase its activity. Rather, it exhibited a trend towards deactiva-
tion during reappraisal (this could be observed only after lowering the
statistical threshold to p b 0.05). This study thus revealed a role for
two networks—in particular visual cortex and default network—not
often discussed in previous studies of emotion regulation. These net-
works do not change their activation levels during emotion regulation,
but they do exhibit substantial and distributed changes in their connec-
tivity profiles—a fact revealed by our whole cortex connectomic
approach.

This study has limitations and raises issues that invite further
study. First, in the sample for this study, 15% were below the poverty
line at the time of scanning and 50% were below the poverty line at
age nine. We did include poverty covariates in all analyses, and we
did not find an effect of childhood poverty on network connectivity
patterns during emotion regulation. Nonetheless, the nature of the
healthy control sample used in this study should be taken into ac-
count before making firm conclusions about healthy control popula-
tions used in typical neuroimaging studies. On the other hand, given
that one in four babies are now born into poverty in the US, more
economically heterogeneous samples are important to include in
neuroscientific investigations rather than the predominance of mid-
dle class college student that currently make up the vast majority of
neuroscientific samples. Second, PPI analysis is based onmultiple re-
gression and is ultimately a covariational technique; it cannot estab-
lish the direction of causality between functionally connected
regions. Future studies should use complementary methods that
can provide evidence about causality. Third, we studied emotion
regulation exclusively in healthy individuals. It is increasingly recog-
nized that aberrant interrelationships between large-scale networks
exist in psychopathologies (Menon, 2011), including depression
(Hamilton et al., 2011) and post-traumatic stress disorder (Sripada
et al., 2012) that are characterized by deficits in emotion regulation.
Future studies should use connectomic methods to investigate ab-
normal network interrelationships during emotion regulation in
these conditions.

In summary, this is the first connectomic fMRI study of patterns of
functional connectivity during emotion regulation. We found that vol-
untary regulation of emotion produces robust and distributed alter-
ations in interrelationships between large-scale networks, adding a
new network perspective to our understanding of the brain mecha-
nisms of emotion regulation.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.11.006.
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